测试开发进阶(三)

测试开发进阶(三)

生成器的三个方法

  • send()和生成器内部进行数据交互

  • close()关闭生成器

1
2
3
4
5
6
7
8
9
10
11
gen = (i for i in range(0, 20, 2))
print(next(gen)) # 0
print(next(gen)) # 2
gen.close()
print(next(gen))
"""
Traceback (most recent call last):
File "/Users/zhongxin/Desktop/py/zx/03/0809.py", line 5, in <module>
print(next(gen))
StopIteration
"""
  • throw()触发异常
1
2
3
4
5
6
7
8
9
10
gen = (i for i in range(0, 20, 2))
gen.throw(NameError, 'name is xxx')
"""
Traceback (most recent call last):
File "/Users/zhongxin/Desktop/py/zx/03/0809.py", line 2, in <module>
gen.throw(NameError, 'name is xxx')
File "/Users/zhongxin/Desktop/py/zx/03/0809.py", line 1, in <genexpr>
gen = (i for i in range(0, 20, 2))
NameError: name is xxx
"""

函数

递归函数

在函数中调用函数自身,我们把这种函数叫做递归函数

递归边界:递归的终止条件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
def func(n):
print(n)
func(n - 1)
func(10)
"""
Traceback (most recent call last):
File "/Users/zhongxin/Desktop/py/zx/03/0809_1.py", line 5, in <module>
func(10)
File "/Users/zhongxin/Desktop/py/zx/03/0809_1.py", line 3, in func
func(n - 1)
File "/Users/zhongxin/Desktop/py/zx/03/0809_1.py", line 3, in func
func(n - 1)
File "/Users/zhongxin/Desktop/py/zx/03/0809_1.py", line 3, in func
func(n - 1)
[Previous line repeated 993 more times]
File "/Users/zhongxin/Desktop/py/zx/03/0809_1.py", line 2, in func
print(n)
RecursionError: maximum recursion depth exceeded while calling a Python object
"""
def func1(n):
print(n)
if n == 1:
return
else:
func(n - 1)
func1(10)
"""
10
9
8
7
6
5
4
3
2
1
"""

实现一个累加函数

  • 6累加的结果 6+5+4+3+2+1
  • 10累加的结果 10+9+8+7+6+5+4+3+2+1
1
2
3
4
5
6
1 1
2 1+2
3 1+2+3
4 1+2+3+4
5 1+2+3+4+5
...
1
2
3
4
5
def fun_add(n):
if n == 1:
return 1
return n + fun_add(n - 1)
print(fun_add(6))

查看最大递归次数

1
2
3
import sys
print(sys.getrecursionlimit()) # 默认1000 实际996
sys.setrecursionlimit(3000) # 实际2996

使用装饰器缓存调用

调用同样的参数后,使用缓存,不会重新开辟空间

https://docs.python.org/zh-cn/3/library/functools.html

@functools.lru_cache(maxsize=128, typed=False)

一个为函数提供缓存功能的装饰器,缓存 maxsize 组传入参数,在下次以相同参数调用时直接返回上一次的结果。用以节约高开销或I/O函数的调用时间。

由于使用了字典存储缓存,所以该函数的固定参数和关键字参数必须是可哈希的。

一个题目:

爬100个台阶,爬台阶每一步可以上一阶,两阶,或三阶,请问一共有多少种爬法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
from functools import lru_cache

@lru_cache(maxsize=128)
def func999(n):
if n == 1:
return 1
elif n == 2:
return 2
elif n == 3:
return 4
else:
return func999(n - 1) + func999(n - 2) + func999(n - 3)

print(func999(100)) # 180396380815100901214157639

纯函数

一个函数的返回结果只依赖于它的参数,并且在执行过程里面没有副作用

  • 变量都只在函数作用域内获取

  • 不会产生副作用(side effects),不会改变被传入的数据或其他数据(全局变量)

    函数的副作用:

  • 相同的输入保证相同的输出

1
2
3
def func(a, b):
return a * b + 100
print(func(11, 222))

内置函数

  • map
1
2
3
4
5
6
li = [1, 2, 3, 4, 5, 6, 7]  # 每个元素*1000/2
def fun(n):
return n * 1000 / 2
res = map(fun, li)
print(res) # <map object at 0x1033050f0>
print(list(res)) # [500.0, 1000.0, 1500.0, 2000.0, 2500.0, 3000.0, 3500.0]
  • filter 过滤器
1
2
3
4
5
def func1(n):
return n >= 5
res1 = filter(func1,li)
print(res1) # <filter object at 0x103b9f390>
print(list(res1)) # [5, 6, 7]
  • zip 聚合打包

长度不一样,以最短为准

1
2
3
4
5
6
7
title = ['name', 'age', 'gender']
data = ['zx', 26, '男']
print(list(zip(title,data))) # [('name', 'zx'), ('age', 26), ('gender', '男')]
print(dict(zip(title,data))) # {'name': 'zx', 'age': 26, 'gender': '男'}
num = [1, 2, 3]
print(list(zip(title, data, num))) # [('name', 'zx', 1), ('age', 26, 2), ('gender', '男', 3)]

匿名函数

关键字:lambda

1
lambda 参数:表达式(返回值)
1
2
res = (lambda n: n * 2)(4)
print(res) # 8

偏函数

1
2
3
# 偏函数之前的写法
li = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
print(list(filter(lambda x:x>5,li))) # [6, 7, 8, 9, 10]
1
2
3
4
5
from functools import partial

li = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
myfilter = partial(filter, lambda x: x > 5)
print(list(myfilter(li))) # [6, 7, 8, 9, 10]

一个简单的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from functools import partial
def func1(a, b, c):
print(a, b, c)

func1(11, 22, 33)
func1(11, 'bb', 'cc')
func1(11, 'dd', 'ee')

myfilter1 = partial(func1, 11)
myfilter1(22, 33)
myfilter1('bb', 'cc')
myfilter1('dd', 'ee')

myfilter2 = partial(func1, b=22)
myfilter2(a=11, c='cc') # 11 22 cc

myfilter2 = partial(func1, a=11, b=22)
myfilter2(c='cc') # 11 22 cc
 wechat
欢迎您扫一扫上面的微信公众号,订阅我的博客!
您的支持将鼓励我继续创作!